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Abstract

The steady state heat transfer characteristics of a thin vertical strip with internal heat generation is studied in this

work. The nondimensional temperature distribution in the strip is obtained as a function of the following
parameters: (a) the intensity and distribution of the internal heat sources, (b) the aspect ratio of the strip, (c) the
longitudinal heat conductance of the strip and (d) the Prandtl number of the ¯uid. Both the thermally thin and the
thick wall approximations are considered in this paper. The total thermal energy or averaged temperature of the

strip is found to decrease as the in¯uence of the longitudinal heat conduction e�ects in the strip decreases in the
thermally thin wall regime. After reaching a minimum, it increases again in the thermally thick wall regime. 7 2000
Elsevier Science Ltd. All rights reserved.
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1. Introduction

The fundamental studies of heat transfer processes
with coupled e�ects of conduction and free or natural
convection is extremely important because it appears
in many practical and industrial devices, like building

insulation, hot-®lm sensors, ®n heat transfer, energy
storage in enclosures, etc. However, the two mechan-
isms are generally decoupled and many works have

appeared in the literature studying the natural convec-
tive heat transfer from vertical solid surfaces with pre-

scribed surface temperature or heat ¯ux. Since the

classical analysis of Pohlhausen reported in the exper-
imental paper of Schmidt and Beckmann [1], extensive
studies of those pre-determined boundary conditions

for the solid surfaces, have been developed in order to
have a better knowledge of these processes. An excel-
lent review can be found in Gebhart et al. [2]. How-
ever, a priori speci®cation of temperature or heat

transfer distribution at the wall represents a serious
shortcoming of these analyses. In some cases, the con-
ductive mechanisms in bounding walls directly coupled

with the natural convective processes, have been ana-
lyzed in the literature. The natural convection bound-
ary layer ¯ow generated adjacent to a semi-in®nite

vertical slab of ®nite thickness was considered by Kel-
leher and Yang [3]. Similarly, Lock and Gunn [4]
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showed that the temperature distribution on a vertical

¯at plate is strongly in¯uenced by the interaction with

the adjacent boundary layer. Zinnes [5] studied the

laminar boundary layer ¯ow along a vertical ¯at plate

with speci®ed uniform heat ¯ux at the surface, includ-

ing the associated conductive transport in the plate. In

this direction, Chen and Fang [6] using numerical

methods, studied the conjugate problem along a verti-

cal plate ®n. Later, Vynnycky and Kimura [7] solved

analytically and numerically the coupled elliptic gov-

erning equations for the conjugate free convection due

to a vertical plate adjacent to a semi-in®nite region.

They con®rmed that for high values of the Rayleigh

number, the results give good agreement with a bound-

ary layer formulation for the ¯uid phases. Merkin and

Pop [8] analyzed the same problem with a boundary

layer scheme and neglecting the axial heat conduction

in the plate. They showed the in¯uence of the Prandtl

number for this conjugate free convection problem.

Kimura et al. [9] studied experimentally the heat trans-

fer process of a vertical heated slab. They developed a

simple theory by assuming a uniform temperature at

one surface of the slab. Clearly, the analysis does not

re¯ect the experimental con®guration, because the tem-

perature itself is part of the solution of the conjugate

heat transfer problem. CoÂ rdova and TrevinÄ o [10] clari-

®ed the role of the longitudinal heat transfer e�ects of

a vertical thin plate in a natural convective cooling

process and recently TrevinÄ o et al. [11] obtained simi-

lar results for a forced convective ¯ow. They studied

the thermally thin and thick wall regimes where simpli-

fying assumptions can be employed to obtain approxi-

mate analytical solutions. Therefore, the importance of

conjugated heat transfer problems is widely recognized

in the literature and many di�erent numerical and ana-

lytical methods have been applied for the above simple

and conventional con®gurations. However in this gen-

eral context, there are more complex situations, where

the in¯uence of other physical aspects like the elec-

tronic circuitry cooling with ®nite heat transfer gener-

ation rates, suggests new frontiers in conjugated heat

problems. In these devices, the steady increase in the

volumetric heat generation rates and the thermal man-

agement are decisive considerations in the design of

chips with their packaging [12,13]. It is well known

that the electronic behavior depends strongly on the

temperature of the chip, the temperature gradients

among the components and the associated thermal fail-

ures resulting from an overhigh chip temperature

di�erences among the components related to critical

electrical paths. Therefore, these failures are not to be

only originated by irreversible mechanical fractures.

This aspect was reported in Ref. [14]. In most appli-

cations, the thermal conditions on the electronic pack-

Nomenclature

c speci®c heat of the natural ¯uid ¯ow
cw speci®c heat of the strip
f nondimensional stream function introduced

in Eq. (5)
G0 nondimensional temperature gradient,

G0 � ÿdf0=dZj0
G1�n� nondimensional temperature gradient,

G1�n� � ÿdf1n=dZj0
g reduced nondimensional stream function

introduced in Eq. (2)
g acceleration of gravity
h thickness of the strip
L length of the strip

Pr Prandtl number of the natural ¯uid ¯ow
Rac Rayleigh number of the natural ¯uid ¯ow
T temperature

T1 free stream temperature of the natural ¯uid
¯ow

x, y Cartesian coordinates

z nondimensional normal coordinate of the
strip de®ned in Eq. (4)

Greek symbols
a heat conduction parameter, a � lwh=

�lLRa1=4�
d thickness of the natural boundary layer
f reduced nondimensional temperature intro-

duced in Eq. (2)

e aspect ratio of the strip, e � h=L
Z nondimensional normal coordinate for the

natural ¯uid ¯ow introduced in Eq. (4)

l thermal conductivity of the natural ¯uid ¯ow
lw plate thermal conductivity of the strip
n kinematic coe�cient of viscosity of the natu-

ral ¯uid ¯ow

r density of the ¯uid
rw density of the strip
x nondimensional coordinate introduced in Eq.

(2)
y nondimensional temperature of the natural

¯uid ¯ow introduced in Eq. (5)

yw nondimensional temperature of the strip
introduced in Eq. (5)

w nondimensional longitudinal coordinate

de®ned in Eq. (4)
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age surfaces are unknown and for a given heat gener-
ation rate, the temperature pro®les within the heat

source, including the location and the maximum
values, are of primordial importance to obtain a high
performance of the various electronic components

within a speci®ed range of temperatures. Several
authors have pointed out these and related aspects,
which can be found in Incropera [15] and Jaluria [16].

Later, Sathe and Joshi [17] showed the importance of
the coupled heat transfer process between a heat gener-
ating substrate-mounted protrusion and a liquid-®lled

two-dimensional enclosure. In these works, the natural
convection from discrete heat sources to extensive
ambient air, is selected in comparison with other mech-
anisms of cooling. For simplicity, the ¯ush heaters

were idealized as uniform heat sources. On the other
hand, several works have appeared in the literature to
analyze the electronic cooling chip problem with forced

¯ows. Recently, a well documented state of the art can
be found in Cole [18].
Following the advantages of passive cooling mech-

anism by natural convection, which are characterized
by simplicity of design, absence of noise and high re-
liability, the main objective of this work is to obtain,

using asymptotic perturbation as well numerical tech-
niques, the temperature distribution in a thin vertical
embedded strip with non-uniform internal heat gener-
ation. For very large values of the Rayleigh number,

Ra, to be de®ned later, a natural upstream boundary

layer develops, causing a permanent heat transfer pro-
cess controlled by the internal heat generation on the

plate.

2. Order of magnitude analysis and formulation

Consider a vertical heat conducting strip of length L
and thickness h, which is totally embedded in a vertical

¯at plate, except the right face of the strip which con-
tacts a ¯uid with temperature T1 as shown in Fig. 1.
Heat is generated internally with a non-uniform volu-

metric rate w. For simplicity, the left, upper and lower
walls are supposed to be adiabatic. In order to satisfy
it, the ratio of the thermal conductivity of the ¯at

plate to the thermal conductivity of the strip is
assumed to be vanishingly small compared with unity.
There are many practical situations where it is a

reasonable and well documented assumption [17]. In
this simple case, the conjugated heat transfer process
between the chip and the cooling ¯ow is isolated. The
lower right corner of the strip coincides with the origin

of a Cartesian coordinate system whose y-axis points
out in the normal direction to the plate and its x-axis
points out in the plate's longitudinal direction. The

temperature variations induce a natural convection
¯ow due to the corresponding density changes. An
order of magnitude analysis shows that these motions

occur in boundary layers with thickness of order
L=Ra1=4, for large values of the Rayleigh number,
Ra � gbDTPrL3=n2: Here, g is the acceleration of grav-
ity, b and n are thermal expansion coe�cients and kin-

ematic viscosities of the ¯uid. Pr denote the Prandtl
number, Pr � rnc=l, where r is the density, c is the
speci®c heat and l is the thermal conductivity of ¯uid,

respectively. DT is the actual temperature di�erence
across the ¯uid layer, which is in fact to be obtained
from the analysis. After de®ning the Rayleigh number

with a characteristic temperature di�erence, DTc, to be
de®ned later, Rac � gbDTcPrL

3=n2, the order of mag-
nitude of the boundary layer thickness and the induced

velocity are given by

d0 L

Ra1=4c

�
DTc

DT

�1=4

and uc0
Ra1=2c n
PrL

�
DT
DTc

�1=2

: �1�

The order of magnitude of the heat ¯ux across the
¯uid is then

q0l�DT�5=4Ra1=4c

L�DTc �1=4
0lwDTw

h
0 �wh: �2�

In these relationships, rw, cw and lw represent the den-

sity, speci®c heat and thermal conductivity of the strip
material. DTw is the characteristic normal temperature
drop at the strip and �w � �1=L� � L0 w dx is the averagedFig. 1. Schematic of the heat transfer problem.
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volumetric heat production term. The last term in re-
lation (2) arises from the thermal energy generated in-

ternally in the strip. From relationships (2), we obtain
that DTc must satisfy

DTcRa
1=4
c 0

�whL

l
� DT � and

DTc

DTw
0 a

e2
: �3�

Here DT � is related to the heat generated internally. If

we de®ne the Rayleigh number as Ra� � Ra�DT ��,
then Rac � �Ra��4=5 and DTc � DT �=�Ra��1=5: e is the
aspect ratio of the strip, e � h=L and is to be assumed
very small compared with unity. Parameter

a � lwh=�lLRa1=4c � is the nondimensional longitudinal
heat conductance of the strip and corresponds to the
ratio of the characteristic residence time in the ¯uid to

the longitudinal di�usion time in the strip. a then gives
the in¯uence of the longitudinal heat conduction
through the strip in the heat transfer process. This par-

ameter can have values much larger or much smaller
than unity, depending on the strip material. For values
such asa=e2 � 1, the temperature variations in the nor-
mal direction of the strip can be neglected, being very

small, of order e2=a, compared with the temperature
di�erences in the ¯uid. That is DTw � DTc: This
regime is called the thermally thin wall regime. For

values of a=e201, the temperature variations in both
directions of the strip now are very important and are
of the same order of magnitude of the temperature

di�erences in the ¯uid. This regime is called the ther-
mally thick wall regime. In this regime because e� 1,
the longitudinal heat conduction through the strip is

very small and can be neglected. Due to the singular
character of the limit a40, the longitudinal heat con-
duction term is to be retained only in thin layers close
to the vertical edges of the strip, in order to achieve

the adiabatic boundary conditions. However, these
thin heat conduction layers have only local in¯uence.
For reference, we notice here the correspondence

o � s � e2=a with the wall parameter o of Anderson
and Bejan [19] and the conjugate parameter s of
Kimura et al. [9].

In order to derive the nondimensional governing
equations, we introduce the following nondimensional
independent variables

w � x

L
, Z � Ra1=4c

y

Lw1=4
, z � y

h
, �4�

together with the nondimensional dependent variables

f � Prc

nRa1=4c w3=4
, y � Tÿ T1

DTc

, yw � Tw ÿ T1
DTc

: �5�

Here, c and f are the dimensional and non-dimen-
sional stream functions de®ned in the usual way, re-
spectively. The nondimensional balance equations,

using the well-known Boussinesq and boundary layer
approximations for large values of the Rayleigh num-

ber, then take the form

@ 2y
@Z2
� 3

4
f
@y
@Z
� w

�
@ f

@Z
@y
@w
ÿ @ f

@w
@y
@Z

�
�6�

@ 3f

@Z3
� y � 1

Pr

"
1

2

�
@ f

@Z

�2

ÿ3
4
f
@ 2f

@Z2

� w

 
@ f

@Z
@ 2f

@w@Z
ÿ @ f

@w
@ 2f

@Z2

!#
,

�7�

for the ¯uid and

a
@ 2yw
@w2
� a

e2
@ 2yw
@z2
� w

�w
� 0, �8�

for the strip. The boundary conditions are given by

f � @ f

@Z
� yÿ yw � @yw

@z
ÿ e2

aw1=4
@y
@Z
� 0

at Z � z � 0

�9�

@yw
@z
� 0 at z � ÿ1 �10�

@yw
@w
� 0 for w � 0 and w � 1 �11�

@ f

@Z
� y � 0 for Z41: �12�

In general, this system of elliptic equations can be nu-
merically integrated. In the following section we

explore asymptotic solutions in both, the thermally
thin and thick wall regimes.

3. Thermally thin wall regime

As mentioned before, for very large values of a=e2

compared with unity, the temperature variations in the
normal direction in the strip can be neglected and the

nondimensional temperature is, in a ®rst approxi-
mation, only a function of the longitudinal coordinate
w: In this regime the characteristic di�usion time in the

normal direction h2rwcw=lw is very small compared
with the residence time L=uc: Thus, the integral form
of the nondimensional energy equation for the strip (8)

can be obtained by integrating along the normal coor-
dinate and after applying the boundary conditions (9)
and (10), we get
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a
d2yw
dw2
� ÿw

�w
ÿ 1

w1=4
@y
@Z

����
Z�0
: �13�

This equation must be solved with the adiabatic con-
ditions for the lateral surfaces of the strip given by Eq.

(11). In the following subsection we present the asymp-
totic solution for a� 1, for this thermally thin wall
regime. For values of a of order unity, the problem

must be solved numerically.

3.1. Asymptotic limit a� 1

From the physical point of view the temperature
variations in the normal direction are negligible com-
pared with the corresponding temperature di�erences

in the ¯uid. This fact was deduced by an order of mag-
nitude analysis in the previous section for the ther-
mally wall regime, through relationship (3). Large

values of the parameter a can be obtained by increas-
ing the thermal conductivity and the aspect ratio of
the strip. In this limit, the non-dimensional tempera-

ture of the plate changes very little in the longitudinal
direction, of order aÿ1: For a thermally thin wall, this
conjugate heat transfer problem can be studied in the
asymptotic limit a41, assuming the following expan-

sion

yw �
X1
j�0

1

a j
ywj�w�, O �

X1
j�0

1

a j
Oj�w, Z� �14�

with O corresponding to any property of the ¯uid, like

f or y: Introducing the above relationships (14) into
the non-dimensional governing Eq. (13) for the plate,
we obtain the following set of equations

d2yw0
dw2

� 0,
d2yw1
dw2

� ÿw
�w
ÿ 1

w1=4
@y0
@Z

����
0

d2ywj
dw2
� ÿ 1

w1=4
@yjÿ1
@Z

����
0

for all j > 1: �15�

The problem is to be solved with the following adia-
batic boundary conditions

dywj
dw
� 0 at w � 0, 1 for all j: �16�

The leading order variable yw0 must be a constant to

be determined below. This value can be found after
integrating the ®rst order equation (15), with the corre-
sponding adiabatic conditions at both edges, giving

dy0=dZjZ�0 � ÿ3=4: The solution of the leading order
equations for the ¯uid (see the Appendix for details)
are self-similar and can be readily obtained as [20]

dy0
dZ
jZ�0 � ÿG0y

5=4
w0 � ÿ

3

4
, �17�

where G0 is the ¯uid nondimensional temperature

gradient at the strip for the normalized case and is
given by

G0�Pr�13

4

�
2Pr=5

1� 2Pr1=2 � 2Pr

�1=4
: �18�

Thus, the leading order solution for the nondimen-
sional temperature of the strip is

yw0 �
�

3

4G0�Pr�
�4=5

: �19�

Introducing the solution for yw0 into the ®rst order
equation (15) for yw1, this takes the form

d2yw1
dw2

� ÿw
�w
� G0y

5=4
w0

w1=4
, �20�

with the boundary conditions given by Eq. (16). The
solution to this equation is given by

yw1 � b0 � b7=4w7=4 � bm�2wm�2, �21�

where b0 is to be obtained from the second-order
equation (15), b7=4 � 4=7 and bm�2 � ÿ1=�m� 2�: In

this case we represented for simplicity the normalized
internal heat production function w= �w as
w= �w � �1�m�wm: The exponent m then represents the

distribution of the internal heat sources in the strip.
m � 0 yields a spatially uniform function and m > 0
generates functions that rise monotonically along the
plate and for larger values of m, shifts the distributions

towards w � 1:
Integrating Eq. (15) for j � 2 and applying the adia-

batic boundary conditions at both edges, we obtain

Fig. 2. Values of the nondimensional temperature gradients

G1�n, Pr� as a function of n, for di�erent values of the Prandtl

number, Pr � 0:72, 1 and 1:
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�1
0

d2yw2
dw2

dw � ÿ
�1
0

@y1
@Z
j0

dw
w1=4
� 0: �22�

In the Appendix we show that the nondimensional
gradient of the ®rst order solution is given by

@y1
@Z
j0 � ÿy1=4w0

X
n�0, 7=4, m�2

bnwnG1�n�: �23�

Introducing Eq. (23) in (22) we obtain the value of the
constant b0 as

b0 � 3

4G1�0�
�

G1�m� 2�
�m� 2��m� 11=4� ÿ

8

35
G1�7=4�

�
: �24�

The functions G1�n� are obtained after solving the fol-
lowing linear set of ordinary di�erential equations for
the boundary layer equations (see Appendix). Fig. 2

shows G1 as a function of n and three di�erent values
of the Prandtl number, Pr � 0:72, 1 and 1: Similar to
G0, G1 is a monotonic increasing function with Pr and

m.
The averaged nondimensional temperature, up to

terms of order 1=a, is then given by

�yw �
�1
0

ywdw ' yw0 � 1

a
�yw1

� yw0 � 1

a

�
3

4G1�0�
�

G1�m� 2�
�m� 2��m� 11=4�

ÿ 8

35
G1�7=4�

�
� 16

77
ÿ 1

�m� 2��m� 3�
�
: �25�

For Pr � 1, an excellent correlation gives

�yw ' 1:6572� 1

a

�
ÿ 0:00174ÿ 0:03244m

� 0:01182m2 ÿ 0:00286m3 � 0:0003m4
�

�O�aÿ2 �: �26�

Fig. 3 shows �yw1 as a function of the distribution par-
ameter m for three di�erent values of the Prandtl num-
ber. For positive values of m, this function is always
negative, showing that the overall thermal energy of

the plate decreases with decreasing values of a in the
thermally thin wall regime.

3.2. Asymptotic limit a40

The limiting behavior in this regime is obtained in

the limit a40, but with a=e2 � 1: In this case the
longitudinal heat conduction in the strip is very small
and can be neglected except in regions close to the
edges of the plate. From Eq. (13) with a � 0, we

obtain

@y
@Z

����
Z�0
� ÿw

�w
w1=4 � ÿ�1�m�wm�1=4: �27�

With this known heat ¯ux distribution, the ¯uid gov-

erning Eqs. (6) and (7) and the nondimensional tem-
perature of the plate (Eq. (8)) with the corresponding
boundary conditions can be solved with a simple

scheme. Using the invariance property of the boundary
layer equations shown in the Appendix, we introduce
the following variables

Z � ws ~Z, f � wt ~f, y � wr ~y
ÿ
~Z
�

and yw � wr ~y�0�: �28�

It can be easily shown that for this case

r � 4m� 1

5
, s � ÿt � ÿm� 1=4

5
, �29�

and the problem of the ¯uid is reduced to solve a con-
ventional heat transfer problem with a known uniform

heat ¯ux distribution at the surface of the wall. There-
fore, the nondimensional temperature of the plate is
given by

yw � ~y�0�w�4m�1�=5, �30�

and ~y�0� is to be obtained from solving the nonlinear
set of ordinary di�erential equations

d2 ~y

d~Z2
� m� 4

5

d~y
d~Z

~fÿ �4m� 1�
5

~y
d ~f

d~Z
� 0 �31�

Fig. 3. First order solution for the nondimensional overall

thermal energy of the strip for the thermally thin wall regime,

as a function of the distribution parameter m, for di�erent

values of the Prandtl number.
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d3 ~f

d~Z3
� ~y � 1

Pr

24 �2m� 3�
5

 
d ~f

d~Z

!2

ÿ�m� 4�
5

~f
d2 ~f

d~Z2

35 �32�

with the boundary conditions

d~y
d~Z
� �1�m� � ~f � d ~f

d~Z
� 0 at ~Z � 0 �33�

~y � d ~f

d~Z
� 0 for ~Z41: �34�

In Fig. 4 ~y�0� is shown as a function of m, for three
di�erent values of the Prandtl number. It represents
the nondimensional temperature at w � 1: It means

that the maximum temperature at the strip is achieved
for increasing values of m. However, the averaged non-
dimensional temperature

�yw � 5

4m� 6
~y�0�, �35�

decreases with m. �yw is also plotted in Fig. 4 for di�er-

ent values of the Prandtl number.

4. Thermally thick wall regime

In this regime, the longitudinal heat conduction is
also very small and is to be neglected. The energy bal-

ance equation for the plate (Eq. (8)) then reduces to

@ 2yw
@z2
� ÿe

2

a
�1�m�wm: �36�

Eq. (36) has to be solved with the boundary con-

ditions:

@yw
@z
� 0 at z � ÿ1, @yw

@z
� e2

aw1=4
@y
@Z

at Z � z � 0:

�37�

Integrating Eq. (36) in the normal z-direction and
applying the boundary conditions (37), we obtain

@y
@Z
j0 � ÿ�1�m�wm�1=4, �38�

which is independent of e and a: The nondimensional

temperature of the plate is then

yw � ywu ÿ
�1�m�e2

a
wm
ÿ
z� z2=2

�
, �39�

where ywu is the nondimensional temperature at the
upper surface of the plate ywu � ~y�0�w�4m�1�=5 and is
exactly the same as that obtained for the thermally

thin wall regime. The averaged nondimensional tem-
perature is then

�yw � 5

4m� 6
~y�0� � 1

3

e2

a
: �40�

In the limit of e2=a40, the total thermal energy of the
strip in this regime is exactly the same as for the case
of a40, for the thermally thin wall regime given by

Eq. (35).

5. Results and discussion

In order to validate the analytical results, the system
of equations for the thermally thin wall regime were
integrated numerically using the quasi-linearization

technique for the boundary layer equations and the
integrated form of the strip equation (13). The bound-

Fig. 5. Numerical solution for the normalized overall thermal

energy of the strip as a function of a, for di�erent values of

the distribution parameter m. The calculations were done for

a Prandtl number, Pr � 1:

Fig. 4. Solution for the asymptotic limit of a � 0 for the ther-

mally thin wall regime. The functions ~y�0� and the nondimen-

sional overall thermal energy of the strip �yw as a function of

the distribution parameter m, for di�erent values of the

Prandtl number.
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ary conditions in the ¯uid for Z41 uses a ®nite mesh
point, Z1, chosen by making numerical experiments by

increasing Z1 until a non-signi®cant change in the sol-
ution is obtained (for Pr � 1, Z1 � 9 produces an
error in the solution less than 1� 10ÿ10). The solution

of the governing equations for the case of Pr41 was
obtained using the boundary condition @ 2f=@Z2 � 0
instead of @ f=@Z � 0 at Z � Z1: Because the non lin-

earity of the boundary layer equations, it was necess-
ary to implement an iterative method based on the
introduction of a pseudo-transient term in Eq. (13),

with a convergence parameter lower than 1� 10ÿ10:
The mesh used for the balance equations were 200 �
200, for the longitudinal and normal directions and a
pseudo-time step not larger than 0.01.

Figs. 5 and 6 show the numerical calculations with
Pr � 1 and e � 0:1 for the normalized overall nondi-
mensional thermal energy of the strip �yw=yw0 as a func-

tion of a=e2: In Fig. 5, we plot the corresponding
results for the thermally thin wall regime. For large
values of a, the temperature of the plate is independent

of m. However, as the value of a decreases, the overall
thermal energy of the strip decreases and this is ampli-
®ed for increasing values of m as was anticipated in

Eq. (25). As a reaches values of order e2, the overall
thermal energy of the strip reaches practically a mini-
mum value. In Fig. 6 we show the numerical results
for the thermally thin wall regime compared with the

analytical results for the thermally thin and thick wall
regimes, for m � 0: For large values of a, the asymp-
totic solution obtained in the limit a41, given by

Eq. (25), provides accurate results for values of
a > 0:5: As the value of a decreases further, the sol-
ution in the thermally thin wall regime reaches asymp-

totically the solution deduced for a40: However, for
values of a of order e2, the thermally thin wall regime

is not more appropriate and the averaged temperature
of the strip will increase with decreasing values of a:
The solution then becomes closer to the analytical sol-
ution obtained for the thermally thick wall regime
given by Eq. (40). The minimum value of the overall

thermal energy is not predicted by the thermally thin
and thick wall regimes. The minimum value is pro-
duced in the transition region from thin to thick wall

regimes and can be obtained by solving the full energy
equation for the strip.
Fig. 7 shows the nondimensional temperature distri-

bution yw as a function of the normalized longitudinal
coordinate w, for di�erent values of the parameter a:
The calculations were done with Pr � 1 and m � 0 for
the thermally thin wall regime. The temperature is

almost ¯at for values of ar1: For smaller values of a,
the temperature decreases strongly at the upper end of
the plate and increases at the lower end.

As illustration, a numerical computation was per-
formed using air as the cooling ¯uid at T1 � 300 K.
The numerical data of the thermal properties was

taken from Sathe [17] and Incropera [21]. Using a strip
of 5 cm length, 0.5 cm thickness, with a volumetric
heat production rate of 40 kW/m3, we obtain the fol-

lowing values for the important parameters:
DT � � 381:1 K, DTc � 17:7 K, Ra� � 4:56� 106,
Rac � 2:12� 105 and thus a � 0:465 and a=e2 � 46:5:
With this value of a and using Fig. 6, we obtain
�yw ' 1:63: Remembering that �Tw � T1 � DTc

�yw, the
average temperature of the strip in physical units is
�Tw0328:9 K. In this numerical case, the limit of ther-

mally thin ¯at plate prevails with a value of a01: The
expected temperature gradient in the streamwise direc-
tion of the strip is, using Eq. (21), DTc=�14aL�05:4 K/

cm. The resulting value of the temperature gradient
shows that natural cooling process must be used with
caution to avoid large thermal stresses, insofar as the
strip is embedded in a material with a very di�erent

Fig. 7. Numerical solution for the nondimensional tempera-

ture of the strip as a function of w, for di�erent values of a:

Fig. 6. Numerical solution for the normalized overall thermal

energy of the strip as a function of a for m � 0, Pr � 1, for

the thermally thin wall regime. The analytical solutions for

the thermally thin and thick wall regimes given by Eqs. (25)

and (40) respectively, are also plotted with a value of e � 0:1:
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thermal conductivity. A better operation condition can
be obtained by increasing the value of a, in order to

reach lower values of the temperature gradient.
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Appendix

In this appendix we derive the asymptotic solution
for the boundary layer governing equations for the

limit a41: Due to the fact that the boundary layer
Eqs. (6) and (7) are invariant under the group of trans-
formation

y�)By, Z�)Bÿ1=4Z, f�)B 1=4f, �A1�
it is convenient to normalize the variables at least for
the leading term equations. Introducing the new vari-
ables

y � yw0f, Z � yÿ1=4w0 x and f � y1=4w0 g, �A2�

the boundary layer equations now take the form

@ 3g

@x3
� f � 1

Pr

(
w

"
@g

@x
@ 2g

@w@x
ÿ @g
@w
@ 2g

@x2

#

� 1

2

�
@g

@x

�2
ÿ3
4
g
@ 2g

@x2

)
�A3�

@ 2f

@x2
� 3

4
g
@f
@x
� w

�
@g

@x
@f
@w
ÿ @g
@w
@f
@x

�
: �A4�

Assuming a series solution of the form

f �
X1
j�0

1

a j
fj�w, x� and g �

X1
j�0

1

a j
gj�w, x�, �A5�

the leading term form of the boundary layer equations
reduce to the classical constant temperature case given

by

d3g0

dx3
� f0 �

1

Pr

(
1

2

�
dg0
dx

�2
ÿ3
4
g0

d2g0

dx2

)
�A6�

d2f0

dx2
� 3

4
g0

df0

dx
� 0, �A7�

with the boundary conditions

f0 ÿ 1 � dg0
dx
� g0 � 0 at x � 0 �A8�

dg0
dx
� f0 � 0 for x41: �A9�

The solution to these Eqs. (A6)±(A9) can be found
elsewhere [20] and the nondimensional temperature
gradient at the wall is then given by a very good corre-

lation

df0

dx
jx�0 � ÿG0�Pr�1ÿ 3

4

�
2Pr

5�1� 2Pr1=2 � 2Pr�
�1=4

:

�A10�
Integrating twice Eq. (20), gives that yw1 can be rep-
resented by the summation of three terms

yw1 �
X

n�0, 7=4, m�2
bnwn: �A11�

Therefore, g1 and f1 can also be written as

g1 �
X

n�0, 7=4, m�2

bn
yw0

wng1n,

f1 �
X

n�0, 7=4, m�2

bn
yw0

wnf1n,

�A12�

where g1n and f1n satisfy the following normalized lin-
ear equations

d3g1n

dx3
� f1n �

1

Pri

(
ÿ �1� n�dg0

dx
dg1n
dx

�
�
3

4
� n

�
g1n

d2g0

dx2
� 3

4
g0

d2g1n

dx2

)
� 0

�A13�

d2f1n

dx2
� 3

4
g0

df1n

dx
� 3

4
g1n

df0

dx

ÿ n

�
dg0
dx

f1n ÿ g1n
df0

dx

�
� 0

�A14�

with the normalized boundary conditions

f0 ÿ 1 � f1n ÿ 1 � g0 � g1n � dg0
dx
� dg1n

dx
� 0

at x � 0

�A15�

dg0
dx
� dg1n

dx
� f0 � f1n � 0 for x41: �A16�
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The nondimensional heat ¯ux @y=@Zj0 is then, up to
the ®rst order in a

@y
@Z
j0 � y5=4w0

@f
@x
j0 � y5=4w0

df0

dx
j0

� y1=4w0

a

X
n�0, 7=4, m�2

bnwn
df1n

dx
j0 �O�aÿ2 �

�A17�

or

@y
@Z
j0 � ÿy5=4w0 G0 ÿ y1=4w0

a

X
n�0, 7=4, m�2

bnwnG1�n� �O�aÿ2 �,

�A18�
where

G1�n� � ÿdf1n

dZ
j0:
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